ISSN 2415-3060 (print), ISSN 2522-4972 (online)
JMBS
  • 1 of 44
Up
JMBS 2019, 4(2): 7–13
https://doi.org/10.26693/jmbs04.02.007
Medicine. Reviews

Possibilities of Metabolism Correction in Patients with Hypoxia of Mixed Genesis in Polytrauma (Literature Review)

Baranova N. V. 1,2, Lantukhova N. D. 1, Dolzhenko M. O. 1, Boyko O. V. 1, Matveenko M. S. 2, Sharlai K. Yu. 1
Abstract

The purpose of this work is to study the causes and mechanisms of the development of mixed hypoxia in patients with multiple injuries and to consider the possibilities of pharmacological correction. Shock as a form of adaptation of an organism to extreme conditions of existence, was formed on the basis of both passive and active defense reactions. About the physiological sense of initial reactions is a peculiar revaluation of blood flow, which characterized the energy demands of different systems of the organism. Completely different changes occur when the active forms of protection fail. Generally, the stimulation of system activity in most cases varies with their oppression. Among the nonspecific protective mechanisms included in shock at different levels (systemic, regional, tissue), include: centralization of blood circulation, hypothermia, stimulation of anaerobic oxidation. Based on the analysis of the literature, we considered the development of the state of tissue hypoxia in the conditions of traumatic injury. Aerobic oxidation and oxidative phosphorylation in mitochondria process is decreased and leads to the decrease of the amount of ATP, the increase of the content of adenosine diphosphate (ADP) and adenosine monophosphate (AMP). The decline in the ATP/ADP+AMP coefficient and activation of the phosphorfructokinase enzyme (PFK) is the cause of increase in the anaerobic glycolysis reaction, decrease in the functional capabilities of the cell and the development of tissue hypoxia. The number of adaptive reactions includes changes in the blood system and tissue processes, one of which is an increase in 2,3-DFG in red blood cells, that leads to reduces the affinity of hemoglobin for oxygen. The number of adaptive reactions includes changes in the blood system and tissue processes, one of which is the increase in 2.3-DFG in red blood cells, that leads to reduces the affinity of hemoglobin for oxygen. The state of hemorrhagic shock, and the associated haemic type of hypoxia, requires urgent correction by blood transfusion. It is known that during long-term storage of red blood cells there is a loss of ATP and 2.3-DFG, as well as a blockade of the cellular mechanism for the release of ATP because of deforming effects on cells in trauma. It is possible that a deficit of 2.3 DFG is caused by both mechanisms: the total loss of red blood cells during blood loss, and the deposition in the areas of impaired microcirculation. The problem of lack of energy compounds and phosphorus-containing substrates creates the need for additional intensive therapy that affects the metabolic processes under conditions of hypoxia of mixed genesis. The use of antihypoxants and antioxidants is reasonable due to the possibility of saving their own macroergic phosphates of cells consumed in the preliminary phosphorylation of hexoses during anaerobic glycolysis.

Keywords: hypoxia of mixed genesis, anaerobic metabolism, ATP, ADP, 2.3 DFG, Fructose-1.6-diphosphate

Full text: PDF (Ukr) 252K

References
  1. Ado AD. Patologicheskaya fiziologiya. Ed by AD Ado, VV Novitskiy. Tomsk: Izd-vo Tomskogo un-ta: 1994. p. 354-61. [Russian]
  2. Agranenko VA, Tibilova NN, Markova NA. Vosstanovlenie polnotsennosti eritrotsitov posle dlitelnogo khraneniya. Gematologiya i transfuziologiya. 1983; 10: 53–54. [Russian]
  3. Vladimirov YuA. Narushenie barernykh svoystv vnutrenney i naruzhnoy membran mitokhondriy, nekroz i apoptoz. Biol memb. 2002; 19(5): 356-77. [Russian]
  4. Haydukova SM, Bubliy YuS. Klinichne znachennya vyznachennya vmistu 2,3-dyfosfohlitserynovoi kysloty v erytrotsytakh khvorykh na spravzhnyu politsytemiyu. Semeynaya medytsyna. 2016; 3(65); 153-5. [Ukrainian]
  5. Halushko OA, Bolyuk MV. Hipofosfatemiya u khvorykh nahostryi insult na tli tsukrovoho diabetu: diahnostyka ta likuvannya. Medytsyna neotlozhnykh sostoyanyi. 2018; 2(89): 38-45. [Ukrainian]
  6. Deryugina AV, Boyarinov GA, Simutis IS, Boyarinova LV, Azov NA. Morfologicheskie i metabolicheskie pokazateli eritrotsitov pri obrabotke ozonom eritrotsitnoy massy. General Reanimatology, 2018, 14(1): 40-9. [Russian] https://doi.org/10.15360/1813-9779-2018-1-40-49
  7. Zayko NN. Patologicheskaya fiziologiya. Ed by NN Zayko, YuV Byts. Kiev: «Logos»; 1996. p. 343-4. [Russian]
  8. Zaychik ASh, Churilov AP. Osnovy obshchey patologii, chast 1. SPb: Elbi; 1999. p. 178-85. [Russian]
  9. Zadnipryanyy IV, Sataeva TP. Primenenie antigipoksantov v korrektsii antenatalnoy gipoksii s pozitsiy ee morfofunktsionalnykh osobennostey (obzor literatury). Zhurn klin ta eksperim med doslidzh. 2013; 1: 13-21. [Russian]
  10. Zarubina IV. Sovremennye predstavleniya o patogeneze gipoksii i ee farmakologicheskoy korrektsii. Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. 2011; 9(3): 31-48. [Russian]
  11. Kraydashenko OV, Sarzhevska AV, Sarzhevskyi AN. Uskladnennya hemotransfuziy: klasyfikatsiya, klinichni proyavy, metody likuvannya ta profilaktyka. Zaporozhskyi medytsynskyi zhurnal. 2012; 2(71): 90-5. [Ukrainian]
  12. Laptev VV, Selivanov EA. Znachenie mikroagregatov donorskoy krovi i ee komponentov v razvitii posttransfuzionnykh oslozhneniy i vozmozhnye sposoby ikh profilaktiki. Vestnik sluzhby krovi Rossii. 2010; 1: 47-54. [Russian]
  13. Gipoksiya (patofiziologicheskie aspekty). Metodicheskie rekomendatsii. Ed by EV Leonov, FI Vismont. Minsk; 2002. 22 p. [Russian]
  14. Litvitskiy PF. Patofiziologiya. Kurs lektsiy. Ed by PF Litvitskiy. M: Meditsina; 1997. p. 197-213. [Russian]
  15. Makedonskaya OG. Obosnovanie primeneniya 3-oksiperidina suktsinata i otritsatelnykh aeroionov kisloroda dlya konservirovaniya krovi i eritrotsitarnoy massy: Abstr. PhDr. (Med.). Saransk; 2015. 27 p. [Russian]
  16. Morozova NV. Issledovanie morfo-funktsionalnykh svoystv eritrotsitov pri konservatsii i roli ikh korrektsii v preduprezhdenii posttransfuzionnykh oslozhneniy pri ozhogakh: Dis. PhDr. (Biol.). M; 1999. 151 p. [Russian]
  17. Nekrasova NO. Indikativna otsinka tkaninnoyi gipoksii u khvorikh molodogo viku zi spondilogennoyu vertebro-bazilyarnoyu nedostatnistyu. Vysnik problem biologiyi i meditsini. 2017; 4(3): 73-6. [Ukrainian]
  18. Ramazanov VV, Volovelskaya EL, Nipot EE, Ershov SS, Ershova NA, Rudenko SV, et al. Svoystva eritrotsitov, otmytykh posle bystrogo zamorazhivaniya-ottaivaniya v srede s sakharozoy i 1,2-propandiolom. Aktualni problemi suchasnoyi meditsini. Visnik VDNZU Ukrayinska medichna stomatologichna akademiya. 2018; 1(61): 188-92. [Ukrainian]
  19. Topchiy NV, Toporkov AS. Vozmozhnosti primeneniya tiotriazolina v kachestve sredstva metabolicheskoy terapii. RMZh. 2015; 15: 890. [Russian]
  20. Tretyakova OS. Kardiozashchita ishemizirovannogo miokarda novorozhdennykh v usloviyakh gipoksii: sovremennye napravleniya. Liki Ukrayini. 2003: 11: 5-10. [Russian]
  21. Khitrov NK. Rukovodstvo po obshchey patologii. Ed by NK Khitrov, DS Sarkisov, MA Paltsev. M: Meditsina; 1999. p. 401-42. [Russian]
  22. Shanin VYu. Klinicheskaya patofiziologiya. Uchebnik dlya meditsinskikh vuzov. SPb: «Spetsialnaya literatura»; 1998. p. 29-38. [Russian]
  23. Shanin VYu. Tipovye patologicheskie protsessy. SPb: Spetsialnaya literatura; 1996. p. 10-23. [Russian]
  24. Gipoksiya. Adaptatsiya, patogenez, klinika. Ed by YuL Shevchenko. SPb: OOO «Elbi-SPB»; 2000. 384 p. [Russian]
  25. Yakovleva EB, Govorukha IT, Zheleznaya AA, Dzhodzhua TV. Infuzionno-transfuzionnaya terapiya (posttransfuzionnye oslozhneniya, sindrom gomologichnoy krovi). Meditsina neotlozhnykh sostoyaniy. 2015; 5(68): 35-41. [Russian]
  26. Almli CR, Levy TJ, Han BH, Shah AR, Gidday JM, Holtzman DM. BDNF protects against spatial memory deficits following neonatal hypoxia-ishemia. Exp Neurol. 2000; 166(1): 99-114. https://www.ncbi.nlm.nih.gov/pubmed/11031087. https://doi.org/10.1006/exnr.2000.7492
  27. Burša F, Pleva L. Anaerobic metabolism associated with traumatic hemorrhagic shock monitored by microdialysis of muscle tissue is dependent on the levels of hemoglobin and central venous oxygen saturation: a prospective, observational study. Scand J Trauma Resusc Emerg Med. 2014; 22: 11. https://www.ncbi.nlm.nih.gov/pubmed/24499479. https://www.ncbi.nlm.nih.gov/pmc/articles/3923388. https://doi.org/10.1186/1757-7241-22-11
  28. Greagh TA, Leachy AL, Bouchier-Hayes DJ, Tormey W, Leader M, Broe PJ. Oxygen free radicals and acute pancreatitis: fact of fiction. In J Med Sci. 1993; 162(12): 497-8. https://www.ncbi.nlm.nih.gov/pubmed/8119786
  29. Kwasiborski PJ, Kowalczyk P, Zieliński J, Przybylski J, Cwetsch A. Role of hemoglobin affinity to oxygen in adaptation to hypoxemia. Pol Merkur Lekarski. 2010 Apr; 28(166): 260-4. [Polish]
  30. Kukes VG, Prokofyev AB, Checha OA, Goroshko OA, Mazerkina IA, Demchenkova YeYu. Vliyaniye antioksidantov na napryazheniye kisloroda v krovi u patsiyentov s khronicheskoy serdechnoy nedostatochnostyu. Mezhdunarodny zhurnal prikladnykh i fundamentalnykh issledovany. 2016; 6(1): 56-8. [Russian]
  31. Qu L, Triulzi DJ. Clinical effects of red blood cell storage. Cancer Control. 2015; 22(1): 26–37. https://www.ncbi.nlm.nih.gov/pubmed/25504276. https://doi.org/10.1177/107327481502200105
  32. Mazur P, Cole KW. Influence of cell concentration on the contribution of unfrozen fraction and salt concentration to the survival of slowly frozen human erythrocytes. Cryobiology. 1985; 22(6): 509–36. https://www.ncbi.nlm.nih.gov/pubmed/4075810. https://doi.org/10.1016/0011-2240(85)90029-X
  33. Zhu H, Zennadi R, Xu BX, Eu JP, Torok JA, Telen MJ, et al. Impaired adenosine-5'-triphosphate release from red blood cells promotes their adhesion to endothelial cells: a mechanism of hypoxemia after transfusion. Crit Care Med. 2011; 39(11): 2478–86. https://www.ncbi.nlm.nih.gov/pubmed/. https://www.ncbi.nlm.nih.gov/pmc/articles/3196852. https://doi.org/10.1097/CCM.0b013e318225754f